ON THE REPRESENTATION OF α -COMPLETE BOOLEAN ALGEBRAS(1)

BY C. C. CHANG

Let α be an infinite cardinal. A Boolean algebra A is α -complete if every subset of A with power (cardinality) at most α possesses a least upper bound in A. An ideal I in a Boolean algebra is α -complete in case the least upper bound (if it exists) of every subset of I with power at most α belongs to I. A Boolean algebra that is \aleph_0 -complete is also called σ -complete. A field of sets B is a Boolean algebra where the operations +, \cdot , and - are respectively the operations of set-union, set-intersection, and complementation with respect to the unit element of B. A field of sets B is α -complete if the union of any subset of B with power at most α belongs to B.

By a theorem of Stone [7], every Boolean algebra is isomorphic to a field of sets. On the other hand, not every α -complete Boolean algebra is isomorphic to some α -complete field of sets; a necessary and sufficient condition for such a representation is that every principal ideal of the algebra be contained in an α -complete maximal ideal (cf. [5]). In 1947, Loomis [3] proved that every σ -complete Boolean algebra A is isomorphic to a σ -complete field of sets B modulo a σ -complete ideal of B. The question was raised as to whether this result holds for all infinite cardinals α . In 1948, Sikorski [5] showed that the Boolean algebra E0 of Lebesgue measurable subsets of the unit interval modulo the sets of measure zero is E^{\aleph_0} -complete but not isomorphic to any E^{\aleph_0} -complete field of sets modulo a E^{\aleph_0} -complete ideal.

It is the object of this note to give a necessary and sufficient condition for α -complete Boolean algebras A to be α -representable, i.e., to be isomorphic to an α -complete field of sets B modulo an α -complete ideal of $B(^2)$. It turned out that to each α -complete Boolean algebra A there is associated an ideal $R_{\alpha}(A)$ which plays the role of a radical with respect to α -representation, i.e., a homomorphic image of A is α -representable if, and only if, the kernel of the homomorphism includes $R_{\alpha}(A)$ (cf. Theorem 3). Our characterization, presented in Theorem 2, may be regarded as a generalization of the theorem of Loomis since every σ -complete Boolean algebra satisfies our condition with

Presented to the Society, April 30, 1955 (cf. [2]); received by the editors June 5, 1956.

⁽¹⁾ The preparation of this paper was supported in part by the United States Navy under Contract No. NONR 401(20)-NR 043-167 monitored by the Office of Naval Research; reproduction in whole or in part is permitted for any purpose of the United States government.

⁽²⁾ This result was first announced in the abstract [2]. It represents the first known characterization of α -representable Boolean algebras and gives a complete solution to Problem 80 in [1, p. 168].

 $\alpha = \aleph_0$ (cf. Theorem 4). Recently, other characterizations of α -representable Boolean algebras have been found (Scott and Tarski [4]) where the proofs given are metamathematical in nature. We shall give a purely algebraic and direct proof (Theorem 6) of the equivalence of the characterization given here and the one given in [4]. This equivalence can be established by analyzing certain properties which individual elements of a Boolean algebra must possess; in so doing, we have proved a theorem (Theorem 5) which, aside from its use in the problem of α -representation, is of some interest in itself.

Let A be a Boolean algebra. We shall denote by $\sum_{i \in I} a_i$ ($\prod_{i \in I} a_i$) the least upper bound (greatest lower bound) in A (if it exists) of the set $\{a_i\}$ $i \in I$. If I is of power at most α , then an element of the form $\sum_{i \in I} a_i$ $(\coprod_{i\in I} a_i)$ is called an α -sum $(\alpha$ -product). A system of elements $a_{i,j}$ indexed by the sets I and J (i.e., $a_{i,j}$ is an element of the Boolean algebra for $i \in I$ and $j \in J$) is call an α -system in case the sets I and J have powers at most α . As usual, the complement of an element a of A shall be denoted by \bar{a} . For typographical reasons, we shall denote the complement of a group of letters by enclosing the group of letters in square brackets followed by a bar, e.g., $[\sum_{i \in I} a_i]^{-}$. Whenever there is no possibility of confusion, we simply let $\bar{a}_i = [a_i]^-$ and $\bar{a}_{i,j} = [a_{i,j}]^-$. 0 and 1 shall denote respectively the zero and unit elements of A. For arbitrary sets A, P(A) denotes the set of all functions f with domain A and such that $f(x) \in x$ for each $x \in A$. We let J^I denote the set of all functions f with domain I and range included in J. If f is a function and X is a set, $f^*(X)$ is the image of X under f. We assume that ordinals have been defined in such a way that every ordinal coincides with the set of smaller ordinals. A cardinal can be understood as an ordinal which has larger power than every smaller ordinal.

DEFINITION. If A is a Boolean algebra and α an infinite cardinal, then $R_{\alpha}(A)$ shall denote the set of all elements $x \in A$ for which there exists an α -system of elements $a_{i,j} \in A$ indexed by the sets I and J such that

(i)
$$\prod_{i \in I} a_{i,j} = 0 \text{ for each } i \in I,$$

and

(ii) for each function $f, f \in J^I$, the set of elements $\{a_{i,f(i)}; i \in I\}$ either contains x or else contains some complementary pair of elements b and b. We see readily from the definition that $0 \in R_{\alpha}(A)$.

THEOREM 1. If A is an α -complete Boolean algebra, then $R_{\alpha}(A)$ is an α -complete ideal of A and $A/R_{\alpha}(A)$ is α -representable.

Proof. We shall first prove that there exists a homomorphism f of A onto an α -complete field of sets B modulo an α -complete ideal N of B, then prove that this homomorphism f preserves α -sums, and, finally, that the kernel of this homomorphism is $R_{\alpha}(A)$.

For each $x \in A$, we let $x^* = \{x, \bar{x}\}$ and $A^* = \{x^*; x \in A\}$. We define a function g on the elements of A to subsets of $P(A^*)$ such that

$$g(x) = \{h; h \in P(A^*) \text{ and } h(x^*) = x\}(3).$$

It is clear that for every $x \in A$, $g(x) \cap g(\bar{x}) = \phi$ and $g(x) \cup g(\bar{x}) = P(A^*)$. We let B be the α -complete field of sets generated by the elements of $g^*(A)$ in the (complete) field of all subsets of $P(A^*)$. Furthermore, let $M = \{\bigcap_{i \in I} g(x_i); I \text{ has at most power } \alpha, x_i \in A \text{ for each } i \in I, \text{ and } \prod_{i \in I} x_i = 0\}$ and N be the α -complete ideal generated by M in B. We now wish to show that B/N is a homomorphic image of A by the following mapping f:

$$f(x) = g(x)/N$$
.

It is clear that $f^*(A)$ generates B/N. Now $f(\bar{x}) = g(\bar{x})/N = [P(A^*) \sim g(x)]/N = [g(x)]^-/N$ and hence f preserves complementation. Let $a = \sum_{i \in I} a_i$ be an α -sum of elements of A. In order to show $f(a) = \sum_{i \in I} f(a_i)$ it is sufficient to prove that the symmetric difference of g(a) and $\bigcup_{i \in I} g(a_i)$ is an element of N. Since I has power at most α and $a \cdot \prod_{i \in I} \bar{a_i} = 0$, we obtain $g(a) \cap \bigcap_{i \in I} g(\bar{a_i}) \in N$. But

$$g(a) \cap \bigcap_{i \in I} g(\bar{a}_i) = g(a) \cap \bigcap_{i \in I} [g(a_i)]^- = g(a) \cap \left[\bigcup_{i \in I} g(a_i) \right]^-,$$

hence

$$g(a) \cap \left[\bigcup_{i \in I} g(a_i) \right]^- \in N.$$

On the other hand, $\bar{a} \cdot a_i = 0$ for each $i \in I$, thus $g(\bar{a}) \cap g(a_i) = [g(a)]^- \cap g(a_i) \in N$ for each $i \in I$. Since N is α -complete, $\bigcup_{i \in I} ([g(a)]^- \cap g(a_i)) \in N$, and

$$[g(a)]^- \cap \bigcup_{i \in I} g(a_i) \in N.$$

It follows from (1) and (2) that the symmetric difference of g(a) and $\bigcup_{i \in I} g(a_i)$ belongs to N. Thus f preserves α -sums and $f^*(A)$ is an α -complete subalgebra of B/N. Hence $f^*(A) = B/N$ and f maps A homomorphically onto B/N preserving all α -sums of elements of A.

It remains to prove that the kernel of f is the set $R_{\alpha}(A)$. If f(x) = 0, then $g(x) \in N$. We see that the condition $g(x) \in N$ is equivalent to the following: there exists an α -system of elements $a_{i,j}$ indexed by the sets I and J such that

(i)
$$\prod_{i \in J} a_{i,j} = 0 \text{ for each } i \in I,$$

(ii)
$$\bigcap_{i \in I} g(a_{i,j}) \in M \text{ for each } i \in I,$$

⁽³⁾ The idea of using the elements of $P(A^*)$ as points in the representation was discussed in [3].

and

(iii)
$$g(x) \subseteq \bigcup_{i \in I} \bigcap_{j \in I} g(a_{i,j}).$$

By the set-theoretical distributive law,

$$\bigcup_{i\in I} \bigcap_{j\in J} g(a_{i,j}) = \bigcap_{h\in J^I} \bigcup_{i\in I} g(a_{i,h(i)}).$$

Hence (iii) together with (3) imply

(4)
$$g(x) \subseteq \bigcup_{i \in I} g(a_{i,h(i)}) \text{ for each } h \in J^I.$$

If the set $\{a_{i,h(i)}; i \in I\}$ does not contain a complementary pair of elements, then any two different elements $a_{i,h(i)}$ and $a_{j,h(j)}$, with $i \neq j$, belong to different elements of A^* . If, in addition, the set $\{a_{i,h(i)}; i \in I\}$ does not contain x, then clearly there exists a function $k \in P(A^*)$ such that $k(x^*) = x$ and $k(a_{i,h(i)}^*) = \bar{a}_{i,h(i)}$ for each $i \in I$, i.e.,

(5)
$$k \in g(x) \text{ and } k \notin g(a_{i,h(i)}) \text{ for each } i \in I.$$

(5) is a contradiction to (4). Hence $x \in R_{\alpha}(A)$. On the other hand, let $x \in R_{\alpha}(A)$ and let $a_{i,j}$ be the associated α -system of elements indexed by the sets I and J. Clearly conditions (i), (ii), and (4) are satisfied by the elements $a_{i,j}$. By (3) and (i) we see that $\bigcap_{h \in J} I \bigcup_{i \in I} g(a_{i,h(i)}) \in N$, which, together with (4) imply (iii). Thus $g(x) \in N$ and f(x) = 0. The theorem has been proved (4).

THEOREM 2. Let A be an α -complete Boolean algebra. Then A is α -representable if, and only if, $R_{\alpha}(A) = \{0\}$.

Proof. Obviously, if $R_{\alpha}(A) = \{0\}$, then by Theorem 1 A is α -representable. Let f be a homomorphism of an α -complete field of sets B onto A and such that f preserves all α -sums of B. Let $x \in R_{\alpha}(A)$ and let $a_{i,j}$ be the associated α -system of elements. We choose an inverse f^{-1} to the function f satisfying the condition: that $f^{-1}(\bar{y}) = [f^{-1}(y)]^-$ for each $y \in A$. It is evident that such an inverse can always be chosen. Since $\prod_{j \in J} a_{i,j} = 0$ for each $i \in I$ and since f preserves all α -sums (and hence all α -products), we obtain

(1)
$$\bigcap_{j \in J} f^{-1}(a_{i,j}) \in B \text{ and } f\left(\bigcap_{j \in J} f^{-1}(a_{i,j})\right) = 0 \text{ for every } i \in I.$$

From (1), it follows that $\bigcup_{i\in I} \bigcap_{j\in J} f^{-1}(a_{i,j}) \in B$, $f(\bigcup_{i\in I} \bigcap_{j\in J} f^{-1}(a_{i,j})) = 0$, and, by an application of the set-theoretical distributive law,

(2)
$$f\left(\bigcap_{h\in J^I}\bigcup_{i\in I}f^{-1}(a_{i,h(i)})\right)=0.$$

⁽⁴⁾ The fact that the ideal $R_{\alpha}(A)$ is α -complete can be proved without resorting to the homomorphism f and without even the assumption of the α -completeness of A.

By our choice of the inverse function f^{-1} , we see that

(3) for every
$$h \in J^I$$
, either $f^{-1}(x) \subseteq \bigcup_{i \in I} f^{-1}(a_{i,h(i)})$, or else $\bigcup_{i \in I} f^{-1}(a_{i,h(i)}) = 1$.

Clearly (3) leads to the condition

(4)
$$f^{-1}(x) \subseteq \bigcup_{i \in I} f^{-1}(a_{i,h(i)}) \text{ for each } h \in J^{I}.$$

Applying now the function f to both sides of the inclusion of (4) and by the use of (2), we obtain the desired conclusion x=0. The theorem has been proved.

The condition $R_{\alpha}(A) = \{0\}$, as has been proved in Theorem 2, is both necessary and sufficient for A to be α -representable. Earlier, Smith [6] gave a sufficient condition for A to be α -representable and which he has shown to be not necessary. Furthermore, he pointed out (in [6]) that all those α -complete Boolean algebras in which the so-called α -distributive law holds satisfy his sufficient condition and, consequently, are α -representable. We see quite easily from our definition of $R_{\alpha}(A)$ that if $R_{\alpha}(A) \neq \{0\}$ then clearly A will not satisfy the α -distributive law. One can also give a simple and direct argument that the condition $R_{\alpha}(A) = \{0\}$ is implied by his sufficient condition; however, we point out here that our condition was obtained without the knowledge of the results to be found in [6] and that the two approaches are entirely different.

The next theorem studies more closely the role that the ideals $R_{\alpha}(A)$ play in the problem of α -representation.

THEOREM 3. Let A be an α -complete Boolean algebra and let N be an α -complete ideal of A. Then A/N is α -representable if, and only if, $R_{\alpha}(A) \subseteq N$.

Proof. Assume that A/N is α -representable, i.e., $R_{\alpha}(A/N) = \{0/N\}$. Let $x \in R_{\alpha}(A)$ and $a_{i,j}$ be the associated α -system of elements. It is evident that the elements $a_{i,j}/N$ of A/N satisfy

(i)
$$\prod_{j \in J} [a_{i,j}/N] = 0/N \text{ for each } i \in I,$$

and

(ii) for every $h \in J^I$, the set of elements $\{a_{i,h(i)}/N; i \in I\}$ contains either x/N or a complementary pair.

Thus, it follows from (i) and (ii) that $x/N \in R_{\alpha}(A/N)$ and $x \in N$.

On the other hand, assume that $R_{\alpha}(A) \subseteq N$. We shall prove that $R_{\alpha}(A/N) = \{0/N\}$. Let $x/N \in R_{\alpha}(A/N)$ and let $(a/N)_{i,j}$ be the associated α -system of elements. Let us now pick representatives $a_{i,j}$ out of the cosets $(a/N)_{i,j}$ such

that if $(a/N)_{i,j} = x/N$, then $a_{i,j} = x$, and such that if $(a/N)_{i,j} = [(a/N)_{i',j'}]^-$, then $a_{i,j} = \bar{a}_{i',j'}$. From this choice of representatives, it follows that

(1)
$$\prod_{i \in I} a_{i,j} \in N \text{ for every } i \in I$$

and

(2) for each $h \in J^I$, the set of elements $\{a_{i,h(i)}; i \in I\}$ either contains x or else contains a complementary pair.

Let now $y = x \cdot \prod_{i \in I} \sum_{j \in J} \bar{a}_{i,j}$ and let us pick a $j' \notin J$ and set $J' = J \cup \{j'\}$. We define an α -system of elements $b_{i,j}$ indexed by the sets I and J' as follows:

(i)
$$b_{i,j} = a_{i,j} \text{ if } j \neq j' \text{ and } a_{i,j} \neq x,$$

(ii)
$$b_{i,j} = y$$
 if $j \neq j'$ and $a_{i,j} = x$,

and

$$b_{i,j'} = y.$$

It follows from (1), (2), and the definition of $b_{i,j}$ that

(3)
$$\prod_{j \in J'} b_{i,j} = 0 \text{ for each } i \in I,$$

and

(4) for every $h \in J'^I$, the set of elements $\{b_{i,h(i)}; i \in I\}$ either contains the element y or else contains a complementary pair.

Conditions (3) and (4) show that the element $y \in R_{\alpha}(A)$ and hence, by our hypothesis, $y \in N$. However, $x = x \cdot \bar{y} + y = x \cdot \sum_{i \in I} \prod_{j \in J} a_{i,j} + y$ and whence, by (2), $x \in N$ and x/N = 0/N. The proof is now complete. (It actually follows from the proof of Theorem 3 that $R_{\alpha}(A/N) = R_{\alpha}(A)/N$ for any α -complete ideal N of A.)

Due to Theorem 3 we may now justly regard the ideal $R_{\alpha}(A)$ as the α -radical of an α -complete Boolean algebra with respect to α -representation. $R_{\alpha}(A)$ is unique in the sense that any α -complete ideal N' of A satisfying Theorem 3 with $R_{\alpha}(A)$ replaced by N' must be identical with $R_{\alpha}(A)$, i.e., $R_{\alpha}(A) = N'$. Furthermore, we see that if α and β are infinite cardinals and $\beta \leq \alpha$, then $R_{\beta}(A) \subseteq R_{\alpha}(A)$. It follows then for each α -complete Boolean algebra A either A is α -representable or else there exists a least $\beta \leq \alpha$ for which $R_{\beta}(A)$ does not vanish. The problem is open whether for all cardinals α and β with $\aleph_0 < \beta \leq \alpha$ there exists an α -complete Boolean algebra A for which β is the least cardinal such that $R_{\beta}(A)$ does not vanish. We shall see from Theorem 4 that if $\beta = \aleph_0$, then $R_{\beta}(A) = \{0\}$.

From the results in [5] and Theorem 2, the algebra L of Lebesgue measurable sets modulo the sets of measure zero is such that $R_{\gamma}(L) \neq \{0\}$, where for the discussion in this paragraph we let $\gamma = 2^{\aleph_0}$. Since the algebra L is

known to be of the power of the continuum, complete, and homogeneous (5), we see immediately that $R_{\gamma}(L)$ is a principal ideal of L and, what is more interesting, $R_{\gamma}(L)$ simply coincides with L. Another interesting example is the Boolean algebra B of the Borel sets modulo the sets of first category in a separable complete metric space S. This Boolean algebra is also known as the algebra of regular open sets of S(6). It is known that B is complete and is of the power of the continuum. Hence $R_{\gamma}(B)$ is again a principal ideal. It is not difficult to see that for any regular open set x there exists a sequence of sets $\{x_{i_0,i_1,\ldots,i_n}\}$ where each i_j is either 0 or 1,

$$x = x_0 + x_1,$$

and

$$x_{i_0, \dots, i_n} = x_{i_0, \dots, i_n, 0} + x_{i_0, \dots, i_n, 1}$$
 for each n ,

and such that for every choice of the index i

$$\prod_{n} x_{i_0,i_1,\ldots,i_n} = 0(7).$$

From the above and Theorem 3.1 in [5] we see that again $R_{\gamma}(B) = B$. Thus in the above two instances, not only are the algebras themselves not 2^{\aleph_0} -representable, but any nontrivial 2^{\aleph_0} -complete homomorphic image is also not 2^{\aleph_0} -representable.

It should also be mentioned that Theorem 3 may be obtained in a metamathematical fashion by using Theorem 2 and the fact that the class of all α -complete Boolean algebras which are α -representable forms an equational class of algebras. As a matter of fact, Scott and Tarski have shown that the characterization given in Theorem 2 can be transformed in a natural way to yield a set of characterizing equations for the class of all α -representable Boolean algebras(8).

The connection between the result of Loomis [3] concerning σ -complete Boolean algebras and Theorem 2 will be made clear by the following theorem.

Theorem 4. For any Boolean algebra A, $R_{\aleph_0}(A) = \{0\}$.

Proof. Let $x \in R_{\aleph_0}(A)$ and let $a_{i,j}$ be the associated \aleph_0 -system of elements indexed by the sets I and J where we may assume I = J = the set of all natural numbers. Suppose that $x \neq 0$, thus $\bar{x} \neq 1$. Hence $1 \neq \bar{x} + \prod_{j \in J} a_{0,j}$ and $1 \neq \prod_{j \in J} (\bar{x} + a_{0,j})$. We can now pick a j_0 such that $\bar{x} + a_{0,j_0} \neq 1$. If we proceed

⁽⁵⁾ For some details on the algebra L, cf. [1, pp. 168-169 and p. 184].

⁽⁶⁾ For some details on the algebra B, cf. [1, pp. 176–179].

⁽⁷⁾ Cf. footnote 5.

⁽⁸⁾ This result may be found in [4, Theorem 1].

in this fashion, we will pick an infinite sequence of elements a_{0,j_0} , a_{1,j_1} , a_{2,j_2} , \cdots such that

$$\bar{x} + a_{0,i_0} + a_{1,i_1} + \cdots + a_{i,i_i} \neq 1$$
 for each $i \in I$.

This clearly means that the function h defined by the condition $h(i) = j_i$ for each $i \in I$ will yield a set of elements $\{a_{i,h(i)}; i \in I\}$ which will not contain x and will not contain a complementary pair. Hence x = 0 and the theorem is proved.

For our subsequent discussion we introduce the following notion. An ideal N of an α -complete Boolean algebra A preserves the α -system of elements $a_{i,j}$ (of A) indexed by the sets I and J if, and only if,

(*) for each
$$i \in I$$
, $\sum_{j \in J} a_{i,j} \in N$ if, and only if, $\bar{a}_{i,j} \in N$ for some $j \in J$.

We see that if, in particular, N is a maximal ideal, then condition (*) can be replaced by the condition

$$(**)$$
 for each $i \in I$, $\sum_{j \in J} a_{i,j} \in N$ if, and only if, $a_{i,j} \in N$ for every $j \in J$.

In general, we see that condition (*) implies the corresponding notion defined in [4] and which in turn implies condition (**); however, for maximal ideals N all three notions are equivalent. The following lemma will require no proof.

LEMMA. An ideal N preserves the α -system of elements $a_{i,j}$ indexed by I and J if, and only if, N preserves the α -system of elements $b_{i,j}$ indexed by the sets I and $J \cup \{j'\} (j' \in J)$ where $b_{i,j} = a_{i,j}$ if $j \neq j'$ and $b_{i,j'} = [\sum_{j \in J} a_{i,j}]^-$ for each $i \in I$.

It follows from the lemma that if an ideal N preserves all α -systems of elements $a_{i,j}$ where $1 = \sum_{j \in J} a_{i,j}$ for each $i \in I$, then N preserves all α -systems of elements.

THEOREM 5. For any element x of an α -complete Boolean algebra A the following four conditions are equivalent.

- (i) $x \in R_{\alpha}(A)$.
- (ii) For any α -system of elements of A, there exists a proper ideal N containing \bar{x} and preserving the α -system of elements and which is β -complete for every cardinal β such that α^{β} has at most the power α .
- (iii) For any α -system of elements of A, there exists a proper ideal N containing \bar{x} and preserving the α -system of elements.
- (iv) For any α -system of elements of A, there exists a maximal ideal M containing \bar{x} and preserving the α -system of elements.
- **Proof.** The equivalence of (iii) and (iv) follows from the fact that if N preserves an α -system of elements, then any of its maximal extensions M will

also preserve the same α -system of elements. The implication (ii) to (iii) is obvious. We shall now show the implication of (iii) to (i) by contradiction. Suppose $x \in R_{\alpha}(A)$ and let $a_{i,j}$ be the associated α -system of elements. Consider now a proper ideal N which preserves the α -system of elements $\bar{a}_{i,j}$ and which contains \bar{x} . Since $1 = \sum_{j \in J} \bar{a}_{i,j}$ for each $i \in I$, it follows that

(1) for each
$$i \in I$$
, $a_{i,j} \in N$ for some $j \in J$.

By (1), we define a function h, $h \in J^I$, such that

(2)
$$a_{i,h(i)} \in N \text{ for each } i \in I.$$

Using (2) and the fact that N is a proper ideal containing \bar{x} , we see that the set of elements $\{a_{i,h(i)}; i \in I\}$ cannot contain the element x nor a complementary pair. Hence we have a contradiction and $x \notin R_{\alpha}(A)$.

Next we prove (ii) from (i). Let $a_{i,j}$ be an α -system of elements indexed by I and J and such that

(3)
$$1 = \sum_{i \in J} a_{i,j} \text{ for each } i \in I.$$

We may assume without loss of generality that the sets I and J have precisely the power α . It follows from the lemma that it is sufficient if we can prove the existence of an ideal N preserving α -systems of the above special form. Notice that (3) leads to

$$0 = \prod_{i \in I} \bar{a}_{i,j} \text{ for each } i \in I.$$

Let β be any cardinal such that α^{β} has at most the power α . We let

$$I_{\beta} = \{\bar{a}_{i,j}; i \in I, j \in J\}^{\beta},$$

and

$$I' = I \cup \bigcup (I_{\beta}; \alpha^{\beta} \text{ has the power at most } \alpha).$$

Since the set $\{a_{i,j}; i \in I, j \in J\}$ has the power α , it is clear that each set I_{β} has the power at most α and the set I' also has power at most α . We now define (in any manner we wish) an α -system of elements $b_{i,j}$ indexed by the sets $I' \cup \{i'\} \{i' \in I'\}$ and J and satisfying the following conditions:

(5)
$$b_{i,j} = \tilde{a}_{i,j} \text{ for } i \in I \text{ and } j \in J.$$

(6)
$$b_{i',j} = 0 \text{ for all } j \in J.$$

(7)
$$\{\bar{y}; y \in f^*(\beta)\} \cup \{x\} \cup \left\{\sum_{\rho \in \beta} f(\rho) + \bar{x}\right\} = \{b_{f,j}; j \in J\} \text{ for each } f \in I_{\beta}.$$

It follows readily from (4)-(7) that

(8)
$$\prod_{j\in J} b_{i,j} = 0 \text{ for each } i \in I' \cup \{i'\}.$$

Since $x \in R_{\alpha}(A)$ and $b_{i,j}$ is an α -system of elements satisfying (8), there exists a function $h \in J^{l' \cup \{i'\}}$ such that

(9) the set of elements $K = \{b_{i,h(i)}; i \in I' \cup \{i'\}\}$ does not contain x and does not contain a complementary pair.

From (6) and (9), we see that

$$(10) 0 \in K \text{ and } 1 \notin K.$$

Let $L = \{b_{i,h(i)}; i \in I\} = \{\bar{a}_{i,h(i)}; i \in I\} \subseteq K$. For any β such that α^{β} has power at most α and for any subset L' of L with power β we can find a function f, $f \in I_{\beta}$, such that $L' = f^*(\beta)$. From (7) and (9) we see that

(11)
$$\sum_{\rho \in \beta} f(\rho) + \bar{x} = b_{f,h(f)} \in K.$$

(10) and (11) clearly imply that the least upper bound of any subset L' of $L \cup \{\bar{x}\}$ of power β is different from 1. We now simply let

$$N = \left\{ y; \text{ for some } L' \subseteq L \cup \left\{ \bar{x} \right\}, L' \text{ has power } \beta, \text{ and } \alpha^{\beta} \text{ has power } \alpha, \text{ and} \right.$$

$$\left. y \leq \sum_{x \in L} x \right\}.$$

Obviously, N is a proper ideal containing \bar{x} and preserving the α -system of elements $a_{i,j}$. Suppose α^{β} has power α . For each $\xi \in \beta$, let $y_{\xi} \in N$ and such that for some β_{ξ} , $\alpha^{\beta_{\xi}}$ has power α and

$$y_{\xi} \leq \sum_{\rho \in \beta_{\xi}} y_{\xi,\rho}$$

where

(14)
$$y_{\xi,\rho} \in L \cup \{\bar{x}\} \text{ for each } \rho \in \beta_{\xi}.$$

Let C be the cardinal sum of all the sets β_{ξ} as $\xi \in \beta$. By the set-theoretical law on exponents, we see that α^{σ} is set-theoretically equivalent to $P(\{\alpha^{\beta_{\xi}}; \xi \in \beta\})$. Since $\alpha^{\beta_{\xi}}$ has the power α for each $\xi \in \beta$, we see that $P(\{\alpha^{\beta_{\xi}}; \xi \in \beta\})$ is simply set-theoretically equivalent to α^{β} which again has the power α . Hence α^{σ} has power α . From this and (14) it follows that there exists a subset L' of $L \cup \{\bar{x}\}$ with power β' where $\alpha^{\beta'}$ has power at most α such that

(15)
$$\sum_{\xi \in \beta} \sum_{\rho \in \beta_{\xi}} y_{\xi,\rho} = \sum_{x \in L'} x.$$

Hence by (13) and (15), $\sum_{\xi \in \beta} y_{\xi} \leq \sum_{x \in L'} x$ and, by (12), $\sum_{\xi \in \beta} y_{\xi} \in N$. Thus we see that N is β -complete for every β such that α^{β} has the power α . The theorem is proved.

Using Theorem 5 we can now present several characterizations of α -representable Boolean algebras in the following(9):

⁽⁹⁾ The equivalence of 6(i) with 6(iv) is precisely a condition given in [4, Theo r₁2]. This is easily seen from our remarks concerning the equivalence of conditions (*) and (**) in case N is maximal.

THEOREM 6. For any α -complete Boolean algebra A the following four conditions are equivalent:

- (i) A is α -representable.
- (ii) For any $x \neq 1$ and any α -system of elements, there exists a proper ideal N containing x and preserving the α -system of elements and which is β -complete for every β such that α^{β} has power at most α .
- (iii) For any $x \neq 1$ and any α -system of elements, there exists a proper ideal N containing x and preserving the α -system of elements.
- (iv) For any $x \neq 1$ and any α -system of elements, there exists a maximal ideal M containing x and preserving the α -system of elements.

Proof. By Theorem 2 and Theorem 5.

In conclusion we point out the significance of condition 6(ii) in the following special application: If a Boolean algebra A is continuously-representable (i.e. 2^{\aleph_0} -representable), then for any $x \neq 1$ and any continuum-system of elements there exists a denumerably-complete proper ideal N containing x and preserving the continuum-system of elements.

REFERENCES

- 1. G. Birkhoff, Lattice theory, Rev. ed., 1948.
- 2. C. C. Chang, A necessary and sufficient condition for an α -complete Boolean algebra to be an α -homomorphic image of an α -complete field of sets, Bull. Amer. Math. Soc. Abstract 61-4-579.
- 3. L. H. Loomis, On the representation of σ -complete Boolean algebras, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 757–760.
- 4. D. Scott and A. Tarski, Metamathematical proofs of some Boolean representation theorems, in preparation.
- 5. R. Sikorski, On the representation of Boolean algebras as fields of sets, Fund. Math. vol. 35 (1948) pp. 247-258.
- 6. E. C. Smith, Jr., A distributivity condition for Boolean algebras, Ann. of Math. vol. 64 (1956) pp. 551-561.
- 7. M. H. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 37-111.

CORNELL UNIVERSITY, ITHACA, N. Y.